Filters
Question type

Study Flashcards

To determine the distance between two aircraft, a tracking station continuously determines the distance to each aircraft and the angle A between them (see figure) .Determine the distance a between the planes when A = 44°, b = 37 miles, and c = 22 miles. ​ To determine the distance between two aircraft, a tracking station continuously determines the distance to each aircraft and the angle A between them (see figure) .Determine the distance a between the planes when A = 44°, b = 37 miles, and c = 22 miles. ​   ​ A) 35.60 miles B) 31.81 miles C) 26.11 miles D) 11.27 miles E) 54.99 miles


A) 35.60 miles
B) 31.81 miles
C) 26.11 miles
D) 11.27 miles
E) 54.99 miles

Correct Answer

verifed

verified

Find values for b such that the triangle has one solution. A = 62°, a = 304.6


A) b304.6,b=304.6sin62b \geq 304.6 , b = \frac { 304.6 } { \sin 62 ^ { \circ } }
B) b304.6,b304.6sin62b \leq 304.6 , b \neq \frac { 304.6 } { \sin 62 ^ { \circ } }
C) b>304.6,b>304.6sin62b > 304.6 , b > \frac { 304.6 } { \sin 62 ^ { \circ } }
D) b304.6,b=304.6sin62b \leq 304.6 , b = \frac { 304.6 } { \sin 62 ^ { \circ } }
E) b304.6,b304.6sin62b \geq 304.6 , b \geq \frac { 304.6 } { \sin 62 ^ { \circ } }

Correct Answer

verifed

verified

Use the Law of Sines to solve for C and B.Round your answer to two decimal places. ​ A = 60°, a = 36, c = 40 ​


A) C ≈ 105.79°, B ≈ 45.79°or​C ≈ 74.21°, B ≈ 14.21°
B) ​C ≈ 74.21°, B ≈ 45.79°or​C ≈ 105.79°, B ≈ 14.21°
C) ​C ≈ 10°, B ≈ 110°or​C ≈ 25.5°, B ≈ 104.5°
D) ​C ≈ 45.79°, B ≈ 74.21°or​C ≈ 14.21°, B ≈ 105.79°
E) ​C ≈ 60°, B ≈ 60°or​C ≈ 45°, B ≈ 75°

Correct Answer

verifed

verified

Write the complex number in trigonometric form.  Write the complex number in trigonometric form.       A)   Z = 3 ( \cos \pi - i \cos \pi )   B)    Z = 3 ( \cos \pi + i \sin \pi )   C)   Z = - 3 ( \cos \pi + i \sin \pi )   D)    Z = 3 \left( \cos \frac { \pi } { 2 } - i \sin \frac { \pi } { 2 } \right)   E)    Z = 3 \left( \cos \frac { 3 \pi } { 2 } + i \sin \frac { 3 \pi } { 2 } \right)


A) Z=3(cosπicosπ) Z = 3 ( \cos \pi - i \cos \pi )
B) Z=3(cosπ+isinπ) Z = 3 ( \cos \pi + i \sin \pi )
C) Z=3(cosπ+isinπ) Z = - 3 ( \cos \pi + i \sin \pi )
D) Z=3(cosπ2isinπ2) Z = 3 \left( \cos \frac { \pi } { 2 } - i \sin \frac { \pi } { 2 } \right)
E) Z=3(cos3π2+isin3π2) Z = 3 \left( \cos \frac { 3 \pi } { 2 } + i \sin \frac { 3 \pi } { 2 } \right)

Correct Answer

verifed

verified

Find a unit vector in the direction of the given vector. u=4,0\mathbf { u } = \langle 4,0 \rangle


A) 1,1\langle 1,1 \rangle
B) 1,0\langle 1,0 \rangle
C) 0,0\langle 0,0 \rangle
D) 4,0\langle 4,0 \rangle
E) 0,1\langle 0,1 \rangle

Correct Answer

verifed

verified

Because of prevailing winds, a tree grew so that it was leaning 6° from the vertical.At a point 43 meters from the tree, the angle of elevation to the top of the tree is 30° (see figure) .Find the height a of the tree. Because of prevailing winds, a tree grew so that it was leaning 6° from the vertical.At a point 43 meters from the tree, the angle of elevation to the top of the tree is 30° (see figure) .Find the height a of the tree.     c = 43 m B = 96°  (Round your answer to two decimal places.)   A) 24.58 m B) 26.58 m C) 25.58 m D) 28.58 m E) 27.58 m c = 43 m B = 96° (Round your answer to two decimal places.)


A) 24.58 m
B) 26.58 m
C) 25.58 m
D) 28.58 m
E) 27.58 m

Correct Answer

verifed

verified

Use the law of Cosines to solve the given triangle.Round your answer to two decimal places. ​ A = 14, b = 7, C = 118° ​ Use the law of Cosines to solve the given triangle.Round your answer to two decimal places. ​ A = 14, b = 7, C = 118° ​   ​ A) A ≈ 42.33°, B ≈ 19.67°, c ≈ 18.36 B) A ≈ 17.67°, B ≈ 17.67°, c ≈ 7 C) A ≈ 44.33°, B ≈ 44.33°, c ≈ 7 D) A ≈ 17.67°, B ≈ 18.36°, c ≈ 18.36 E) A ≈ 44.33°, B ≈ 17.67°, c ≈ 7


A) A ≈ 42.33°, B ≈ 19.67°, c ≈ 18.36
B) A ≈ 17.67°, B ≈ 17.67°, c ≈ 7
C) A ≈ 44.33°, B ≈ 44.33°, c ≈ 7
D) A ≈ 17.67°, B ≈ 18.36°, c ≈ 18.36
E) A ≈ 44.33°, B ≈ 17.67°, c ≈ 7

Correct Answer

verifed

verified

Find the angle θ\theta between the vectors. u=6,2v=7,0\begin{array} { l } \mathbf { u } = \langle 6,2 \rangle \\\mathbf { v } = \langle 7,0 \rangle\end{array} (Round the answer to 2 decimal places.)


A) 18.4318.43 ^ { \circ }
B) 33.4333.43 ^ { \circ }
C) 23.4323.43 ^ { \circ }
D) 28.4328.43 ^ { \circ }
E) 38.4338.43 ^ { \circ }

Correct Answer

verifed

verified

Use the vectors u=2,2\mathbf { u } = \langle 2,2 \rangle , v=2,2\mathbf { v } = \langle - 2,2 \rangle to find the indicated quantity.State whether the result is a vector or a scalar. 3uv3 \mathbf { u } \cdot \mathbf { v }


A) 0,2\langle 0,2 \rangle ; vector
B) -2; scalar
C) 2; scalar
D) 4,4\langle 4 , - 4 \rangle ; vector
E) 0; scalar

Correct Answer

verifed

verified

Determine whether the Law of Sines or the Law of Cosines is needed to solve the triangle.Then solve the triangle.Round your answer to two decimal places. ​ A = 46°, B = 39°, c = 1.4 ​


A) Law of Cosines; No solution
B) Law of Sines; No solution
C) Law of Cosines; C = 95°, a ≈ 0.88, b ≈ 1.01
D) Law of Sines; C = 95°, a ≈ 1.01, b ≈ 0.88
E) Law of Sines; C = 95°, a ≈ 1.01, b ≈ 1.01

Correct Answer

verifed

verified

Represent the following complex number graphically. 3(cos160+isin160) 3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)  Represent the following complex number graphically.      3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)         A)    B)    C)     D)    E)


A)  Represent the following complex number graphically.      3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)         A)    B)    C)     D)    E)
B)  Represent the following complex number graphically.      3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)         A)    B)    C)     D)    E)
C)  Represent the following complex number graphically.      3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)         A)    B)    C)     D)    E)
D)  Represent the following complex number graphically.      3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)         A)    B)    C)     D)    E)
E)  Represent the following complex number graphically.      3 \left( \cos 160 ^ { \circ } + i \sin 160 ^ { \circ } \right)         A)    B)    C)     D)    E)

Correct Answer

verifed

verified

A force of F pounds is required to pull an object weighing W pounds up a ramp inclined at θ degrees from the horizontal. ​ Find F if W = 100 pounds and θ = 11°.Approximate the answer to one decimal place. ​


A) 18.1 lb
B) 21.1 lb
C) 19.1 lb
D) 20.1 lb
E) 17.1 lb

Correct Answer

verifed

verified

Use the Law of Sines to solve (if possible) the triangle.Round your answers to two decimal places. ​ A = 120°, a = b = 36 ​


A) B ≈ 108°, C ≈ 36°, c ≈ 44
B) B ≈ 36°, C ≈ 108°, c ≈ 23.5
C) B ≈ 105°, C ≈ 39°, c ≈ 23.5
D) B ≈ 29°, C ≈ 115°, c ≈ 23.5
E) No Solution

Correct Answer

verifed

verified

Given u=5,6\mathbf { u } = \langle - 5 , - 6 \rangle and v=6,5\mathbf { v } = \langle - 6 , - 5 \rangle , find u.vu^. v .


A) 0
B) 30
C) 60
D) 61
E) -11

Correct Answer

verifed

verified

Using the figure below, sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.] -u Using the figure below, sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]   -u     A)    B)     C)     D)     E) none of these


A) Using the figure below, sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]   -u     A)    B)     C)     D)     E) none of these
B) Using the figure below, sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]   -u     A)    B)     C)     D)     E) none of these
C) Using the figure below, sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]   -u     A)    B)     C)     D)     E) none of these
D) Using the figure below, sketch a graph of the given vector.[The graphs in the answer choices are drawn to the same scale as the graph below.]   -u     A)    B)     C)     D)     E) none of these
E) none of these

Correct Answer

verifed

verified

Determine the area of a triangle having the following measurements.Round your answer to two decimal places. B = 64 ^\circ 31 ' , a = 10 and c = 8.


A) 43.33 sq. units
B) 32.50 sq. units
C) 28.89 sq. units
D) 36.11 sq. units
E) 39.72 sq. units

Correct Answer

verifed

verified

Find the vector v that has a magnitude of 9 and is in the same direction as u, where u=6,5\mathbf { u } = \langle 6 , - 5 \rangle .


A) v=56161,66161\mathbf { v } = \left\langle \frac { 5 \sqrt { 61 } } { 61 } , - \frac { 6 \sqrt { 61 } } { 61 } \right\rangle
B) v=456161,546161\mathrm { v } = \left\langle \frac { 45 \sqrt { 61 } } { 61 } , - \frac { 54 \sqrt { 61 } } { 61 } \right\rangle
C) v=6161,6161\mathbf { v } = \left\langle \frac { \sqrt { 61 } } { 61 } , - \frac { \sqrt { 61 } } { 61 } \right\rangle
D) v=66161,56161\mathbf { v } = \left\langle \frac { 6 \sqrt { 61 } } { 61 } , - \frac { 5 \sqrt { 61 } } { 61 } \right\rangle
E) v=546161,456161\mathbf { v } = \left\langle \frac { 54 \sqrt { 61 } } { 61 } , - \frac { 45 \sqrt { 61 } } { 61 } \right\rangle

Correct Answer

verifed

verified

Use the vectors u=3,6\mathbf { u } = \langle 3,6 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle to find the indicated quantity.State whether the result is a vector or a scalar. (uv) v( \mathbf { u } \cdot \mathbf { v } ) \mathbf { v }


A) 72,60\langle - 72,60 \rangle ; vector
B) 72,64\langle - 72,64 \rangle ; vector
C) -72; scalar
D) 60; scalar
E) 72,58\langle - 72,58 \rangle ; vector

Correct Answer

verifed

verified

Determine the angle θ\theta in the design of the streetlight shown in the following figure.Round your answer upto decimal place. a=6,b=712,c=5a = 6 , b = 7 \frac { 1 } { 2 } , c = 5  Determine the angle  \theta  in the design of the streetlight shown in the following figure.Round your answer upto decimal place.    a = 6 , b = 7 \frac { 1 } { 2 } , c = 5          A) 80.5° B) 95.5° C) 75.5° D) 85.5° E) 90.5°


A) 80.5°
B) 95.5°
C) 75.5°
D) 85.5°
E) 90.5°

Correct Answer

verifed

verified

Determine whether u are v and orthogonal, parallel, or neither. u=43,32,v=16,18\mathbf { u } = \left\langle \frac { - 4 } { 3 } , \frac { 3 } { 2 } \right\rangle , \mathbf { v } = \langle 16 , - 18 \rangle


A) neither
B) parallel
C) orthogonal

Correct Answer

verifed

verified

Showing 121 - 140 of 304

Related Exams

Show Answer