Filters
Question type

Study Flashcards

Use the exponential decay formula with half-lives to find the final amount. Round to the nearest tenth when necessary. -  Original  Half-Life  Amount  (in years)   Number  of Years  Final Amount after  x Time Intervals 400852\begin{array}{c|c|c|c}\text { Original } & \text { Half-Life } \\\text { Amount } & \text { (in years) } & \begin{array}{c}\text { Number } \\\text { of Years }\end{array} & \begin{array}{c}\text { Final Amount after } \\\text { x Time Intervals }\end{array} \\\hline 400 & 8 & 52 &\end{array}


A) 4.44.4
B) 1.61.6
C) 425.7425.7
D) 359.5359.5

Correct Answer

verifed

verified

Write the expression as sums or differences of multiples of logarithms. - log7x3y5\log _ { 7 } x ^ { 3 } y ^ { 5 }


A) 8+log7x+log3y8 + \log _ { 7 } x + \log _ { 3 } y
B) 3log7x+5log7y3 \log _ { 7 } x + 5 \log _ { 7 } y
C) 15log7x+log7y15 \log _ { 7 } x + \log _ { 7 } y
D) 3log7x5log7y3 \log _ { 7 } x - 5 \log _ { 7 } y

Correct Answer

verifed

verified

Determine whether the functions f and g are inverses of each other. - f(x) =(x+2) 33;g(x) =x+33+2f ( x ) = ( x + 2 ) ^ { 3 } - 3 ; g ( x ) = \sqrt [ 3 ] { x + 3 } + 2


A) Yes
B) No\mathrm { No }

Correct Answer

verifed

verified

Determine whether the graph of the function is the graph of a one-to-one function. -Determine whether the graph of the function is the graph of a one-to-one function. -  A)  Yes B)  No


A) Yes
B) No

Correct Answer

verifed

verified

Provide an appropriate response. -If f(x) =xf ( x ) = x and g(x) =2x7g ( x ) = 2 x - 7 , find (fg) (x) ( f \cdot g ) ( x ) .


A) 2x27x2 x ^ { 2 } - 7 x
B) 2x72 x - 7
C) 3x73 x - 7
D) 2x272 x ^ { 2 } - 7

Correct Answer

verifed

verified

Use the power property to rewrite the expression. - log2y4\log _ { 2 } \sqrt [ 4 ] { y }


A) 14log2y4\frac { 1 } { 4 } \log _ { 2 } \sqrt [ 4 ] { y }
B) 4log2y4 \log _ { 2 } y
C) 12log4y\frac { 1 } { 2 } \log _ { 4 } y
D) 14log2y\frac { 1 } { 4 } \log _ { 2 } \mathrm { y }

Correct Answer

verifed

verified

Fill in the blank with one of the words or phrases listed below. Some words or phrases may be used more than once.  inverse  common  composition symmetric  exponential  vertical  logarithmic  natural half-life  horizontal \begin{array} { l l l l } \text { inverse } & \text { common } & \text { composition symmetric } & \text { exponential } \\\text { vertical } & \text { logarithmic } & \text { natural half-life } & \text { horizontal }\end{array} -The graphs of f\mathrm { f } and f1\mathrm { f } ^ { - 1 } are ــــــــــــabout the line y=xy = x .


A) horizontal
B) inverse
C) symmetric
D) vertical

Correct Answer

verifed

verified

Use the exponential growth formula to find the final amount. Round to the nearest whole. - Use the exponential growth formula to find the final amount. Round to the nearest whole. -   A)  802,831 B)   2,025,687  C)   1,027,335  D)  908,555


A) 802,831
B) 2,025,6872,025,687
C) 1,027,3351,027,335
D) 908,555

Correct Answer

verifed

verified

Write the function F(x) as a composition of f, g, or h. - f(x) =x21g(x) =4xh(x) =x2F(x) =x23\begin{array} { l } f ( x ) = x ^ { 2 } - 1 \quad g ( x ) = - 4 x \quad h ( x ) = \sqrt { x - 2 } \\F ( x ) = \sqrt { x ^ { 2 } - 3 }\end{array}


A) F(x) =(hf) (x) \mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ) ( \mathrm { x } )
B) F(x) =(hg) (x) F ( x ) = ( h \circ g ) ( x )
C) F(x) =(gh) (x) \mathrm { F } ( \mathrm { x } ) = ( \mathrm { g } \circ \mathrm { h } ) ( \mathrm { x } )
D) F(x) =(fh) (x) F ( x ) = ( f \circ h ) ( x )

Correct Answer

verifed

verified

Solve. -Business people are concerned with cost functions, revenue functions, and profit functions. Suppose the revenue R(x) R ( x ) for xx units of a product can be described by R(x) =410xR ( x ) = 410 x , and the cost C(x) C ( x ) can be described by C(x) C ( x ) =2900+110x= 2900 + 110 x . Find the profit P(x) P ( x ) for xx units.


A) P(x) =300x2900P ( x ) = \frac { 300 } { x } - 2900
B) P(x) =300x+2900\mathrm { P } ( \mathrm { x } ) = 300 \mathrm { x } + 2900
C) P(x) =300x2900P ( x ) = 300 x - 2900
D) P(x) =520x2900P ( x ) = 520 x - 2900

Correct Answer

verifed

verified

Use the exponential decay formula to find the final amount. Round to the nearest whole. -Use the exponential decay formula to find the final amount. Round to the nearest whole. -   A)  15 B)  10 C)  21 D)  28


A) 15
B) 10
C) 21
D) 28

Correct Answer

verifed

verified

Solve the equation for x. Give an approximate solution accurate to four decimal places. - log(3x+7) =0.7\log ( 3 x + 7 ) = - 0.7


A) {0.9715}\{ - 0.9715 \}
B) {20.4015}\{ - 20.4015 \}
C) {6.8005}\{ - 6.8005 \}
D) {2.2668}\{ - 2.2668 \}

Correct Answer

verifed

verified

If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs. -f = {(-6, -9) , (6, 9) , (7, 11) , (-7, -11) }


A) f-1 = {(-9, -6) , (9, 6) , (11, 6) , (-11, -7) }
B) f-1 = {(-9, -6) , (-6, 6) , (11, 7) , (-11, -7) }
C) f-1 = {(-9, -6) , (9, 6) , (11, 7) , (-11, -7) }
D) not one-to-one

Correct Answer

verifed

verified

Solve for x. - log3/5x=3\log _ { 3 / 5 } x = 3


A) {35}\left\{ \frac { 3 } { 5 } \right\}
B) {27125}\left\{ \frac { 27 } { 125 } \right\}
C) {275}\left\{ \frac { 27 } { 5 } \right\}
D) {33/5}\left\{ 3 ^ { 3 / 5 } \right\}

Correct Answer

verifed

verified

Write the function F(x) as a composition of f, g, or h. - f(x) =x22g(x) =3xh(x) =x8F(x) =3x26\begin{array} { l } f ( x ) = x ^ { 2 } - 2 \quad g ( x ) = 3 x \quad h ( x ) = \sqrt { x - 8 } \\F ( x ) = 3 x ^ { 2 } - 6\end{array}


A) F(x) =(fg) (x) F ( x ) = ( f \circ g ) ( x )
B) F(x) =(gh) (x) F ( x ) = ( g \circ h ) ( x )
C) F(x) =(hg) (x) \mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
D) F(x) =(gf) (x) F ( x ) = ( g \circ f ) ( x )

Correct Answer

verifed

verified

Find the value of the logarithmic expression. - log553\log _ { 5 } 5 ^ { 3 }


A) 5
B) 3
C) 125
D) 25

Correct Answer

verifed

verified

Use the exponential decay formula to find the final amount. Round to the nearest whole. -  Original  Amount  Decay  Rate per Year  Number  of Years,  Final Amount after  x Years of Decay 12,00012%11\begin{array}{c|c|c|c}\begin{array}{c}\text { Original } \\\text { Amount }\end{array} & \begin{array}{c}\text { Decay } \\\text { Rate per Year }\end{array} & \begin{array}{c}\text { Number } \\\text { of Years, }\end{array} & \begin{array}{c}\text { Final Amount after } \\\text { x Years of Decay }\end{array} \\\hline 12,000 & 12 \% & 11 &\end{array}


A) 2594
B) 3330
C) 2964
D) 2941

Correct Answer

verifed

verified

Solve the equation. - log4(x+2) log4x=2\log _ { 4 } ( x + 2 ) - \log _ { 4 } x = 2


A) {152}\left\{ \frac { 15 } { 2 } \right\}
B) {4}\{ 4 \}
C) {215}\left\{ \frac { 2 } { 15 } \right\}
D) {18}\left\{ \frac { 1 } { 8 } \right\}

Correct Answer

verifed

verified

Graph the exponential function. - f(x) =(12) x+1f(x) =\left(\frac{1}{2}\right) ^{x+1}  Graph the exponential function. - f(x) =\left(\frac{1}{2}\right) ^{x+1}    A)    B)    C)    D)


A)
 Graph the exponential function. - f(x) =\left(\frac{1}{2}\right) ^{x+1}    A)    B)    C)    D)
B)
 Graph the exponential function. - f(x) =\left(\frac{1}{2}\right) ^{x+1}    A)    B)    C)    D)
C)
 Graph the exponential function. - f(x) =\left(\frac{1}{2}\right) ^{x+1}    A)    B)    C)    D)
D)
 Graph the exponential function. - f(x) =\left(\frac{1}{2}\right) ^{x+1}    A)    B)    C)    D)

Correct Answer

verifed

verified

For the given functions f and g, find the composition. - f(x) =4x+5;g(x) =5x1f ( x ) = 4 x + 5 ; g ( x ) = 5 x - 1 Find (fg) (x) ( f \circ g ) ( x ) .


A) 20x+2420 x + 24
B) 20x+920 x + 9
C) 20x+420 x + 4
D) 20x+120 x + 1

Correct Answer

verifed

verified

Showing 161 - 180 of 300

Related Exams

Show Answer