Filters
Question type

Study Flashcards

Solve the equation. Give an exact solution. - 62x=2.26 ^ { 2 x } = 2.2


A) log2.22log6\frac { \log 2.2 } { 2 \log 6 }

B) 2.2log2log6\frac { 2.2 \log 2 } { \log 6 }

C) log2.26log2\frac { \log 2.2 } { 6 \log 2 }

D) 2log2.2log6\frac { 2 \log 2.2 } { \log 6 }

Correct Answer

verifed

verified

Find f(x) and g(x) so that the given function h(x) = (f ° g) (x) . - h(x) =5x+7h ( x ) = \frac { 5 } { x + 7 }


A) f(x) =1x5;g(x) =x+7f ( x ) = \frac { 1 } { x - 5 } ; g ( x ) = x + 7
B) f(x) =x+7;g(x) =5xf ( x ) = x + 7 ; g ( x ) = \frac { 5 } { x }
C) f(x) =7x;g(x) =x5f ( x ) = \frac { 7 } { x } ; g ( x ) = x - 5
D) f(x) =5x;g(x) =x+7f ( x ) = \frac { 5 } { x } ; g ( x ) = x + 7

Correct Answer

verifed

verified

Graph the exponential function. - y=(13) xy = - \left( \frac { 1 } { 3 } \right) ^ { x }  Graph the exponential function. - y = - \left( \frac { 1 } { 3 } \right)  ^ { x }    A)    B)    C)    D)


A)
 Graph the exponential function. - y = - \left( \frac { 1 } { 3 } \right)  ^ { x }    A)    B)    C)    D)
B)
 Graph the exponential function. - y = - \left( \frac { 1 } { 3 } \right)  ^ { x }    A)    B)    C)    D)
C)
 Graph the exponential function. - y = - \left( \frac { 1 } { 3 } \right)  ^ { x }    A)    B)    C)    D)
D)
 Graph the exponential function. - y = - \left( \frac { 1 } { 3 } \right)  ^ { x }    A)    B)    C)    D)

Correct Answer

verifed

verified

Use the properties of logarithms to write the expression as a single logarithm. - log6x+4log6xlog6(x+9) \log _ { 6 } x + 4 \log _ { 6 } x - \log _ { 6 } ( x + 9 )


A) log6x5x+9\log _ { 6 } \frac { x ^ { 5 } } { x + 9 }
B) log6[x5(x+9) ]\log _ { 6 } \left[ x ^ { 5 } ( x + 9 ) \right]
C) log6x3x+9\log _ { 6 } \frac { x ^ { 3 } } { x + 9 }
D) log6x+9x3\log _ { 6 } \frac { x + 9 } { x ^ { 3 } }

Correct Answer

verifed

verified

Provide an appropriate response. -Solve 6x2=1366 ^ { x - 2 } = \frac { 1 } { 36 } for xx . Give an exact solution.


A) 4
B) 52\frac { 5 } { 2 }
C) 0
D) log2\log 2

Correct Answer

verifed

verified

Solve the equation. - log4(x5) =4\log _ { 4 } ( x - 5 ) = 4


A) 11
B) 21
C) 261
D) 251

Correct Answer

verifed

verified

Determine whether the function is one-to-one. If it is one-to-one find an equation or a set of ordered pairs that defines the inverse function of the given function. - f={(0,0) ,(1,1) ,(2,8) }\mathrm { f } = \{ ( 0,0 ) , ( 1,1 ) , ( - 2,8 ) \}


A) one-to-one; f1={(0,0) ,(1,1) ,(8,2) }\mathrm { f } ^ { - 1 } = \{ ( 0,0 ) , ( 1,1 ) , ( 8 , - 2 ) \}
B) not one-to-one
C) one-to-one; f1={(0,0) ,(1,2) ,(8,1) }\mathrm { f } ^ { - 1 } = \{ ( 0,0 ) , ( 1 , - 2 ) , ( 8,1 ) \}
D) one-to-one; f1={(0,0) ,(1,11) ,(2,18) }\mathrm { f } ^ { - 1 } = \left\{ ( 0,0 ) , \left( 1 , \frac { 1 } { 1 } \right) , \left( - 2 , \frac { 1 } { 8 } \right) \right\}

Correct Answer

verifed

verified

Write as a logarithmic equation. - 32=93 ^ { 2 } = 9


A) log93=2\log _ { 9 } ^3 = 2
B) log29=3\log _ { 2 } ^9 = 3
C) log39=2\log _ { 3 } ^9 = 2
D) log32=9\log _ { 3 } ^2 = 9

Correct Answer

verifed

verified

Write as an exponential equation. - log33=12\log _ { 3 } \sqrt { 3 } = \frac { 1 } { 2 }


A) 312=33 ^ { \frac { 1 } { 2 } } = \sqrt { 3 }
B) (12) 3=3\left( \frac { 1 } { 2 } \right) ^ { 3 } = \sqrt { 3 }
C) 33=123 \sqrt{3}=\frac{1}{2}
D) 312=3\sqrt { 3 } ^ { \frac { 1 } { 2 } } = 3

Correct Answer

verifed

verified

Solve the equation. - log(5+x) log(x3) =log3\log ( 5 + x ) - \log ( x - 3 ) = \log 3


A) 12\frac { 1 } { 2 }
B) 7- 7
C) \varnothing
D) 7

Correct Answer

verifed

verified

Solve the equation for x. Give an exact solution. - log3x=8\log 3 x = - 8


A) 1083\frac { 10 ^ { - 8 } } { 3 }
B) 803- \frac { 80 } { 3 }
C) 24- 24
D) 1038\frac { 10 ^ { 3 } } { - 8 }

Correct Answer

verifed

verified

Find the inverse of the one-to-one function. - f(x) =x3+8f ( x ) = x ^ { 3 } + 8


A) f1(x) =x38f ^ { - 1 } ( x ) = - x ^ { 3 } - 8
B) f1(x) =x83f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - 8 }
C) f1(x) =x+83f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 8 }
D) f1(x) =x38f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x } - 8

Correct Answer

verifed

verified

Write the expression as sums or differences of multiples of logarithms. - logy9x2\log _ { y } \frac { 9 x } { 2 }


A) logy7x\log _ { y } 7 x
B) logy9+logyxlogy2\log _ { y } 9 + \log _ { y } x - \log _ { y } 2
C) logy9+logyx+logy2\log _ { y } 9 + \log _ { y } x + \log _ { y } 2
D) logy9xlogy2\log _ { y } 9 x - \log _ { y } 2

Correct Answer

verifed

verified

Find the exact value. - lne2.2\ln \mathrm { e } ^ { 2.2 }


A) 22
B) 2.2- 2.2
C) 2.22.2
D) log2.2\log 2.2

Correct Answer

verifed

verified

Find the inverse of the one-to-one function. - f(x) =6x+9f ( x ) = 6 x + 9


A) f1(x) =x96f ^ { - 1 } ( x ) = - \frac { x - 9 } { 6 }
B) f1(x) =x96f ^ { - 1 } ( x ) = \frac { x - 9 } { 6 }
C) f1(x) =x+69f ^ { - 1 } ( x ) = - \frac { x + 6 } { 9 }
D) f1(x) =x+96f ^ { - 1 } ( x ) = \frac { x + 9 } { 6 }

Correct Answer

verifed

verified

Solve the equation for x. Give an approximate solution accurate to four decimal places. - ln2x=0.2\ln 2 x = 0.2


A) 0.27180.2718
B) 0.40.4
C) 0.61070.6107
D) 0.67490.6749

Correct Answer

verifed

verified

Write the function F(x) as a composition of f, g, or h. - f(x) =x22g(x) =6xh(x) =x1F(x) =36x22\begin{array} { l } f ( x ) = x ^ { 2 } - 2 \quad g ( x ) = - 6 x \quad h ( x ) = \sqrt { x - 1 } \\F ( x ) = 36 x ^ { 2 } - 2\end{array}


A) F(x) =(gf) (x) F ( x ) = ( g \circ f ) ( x )
B) F(x) =(gh) (x) F ( x ) = ( g \circ h ) ( x )
C) F(x) =(fg) (x) F ( x ) = ( f \circ g ) ( x )
D) F(x) =(hg) (x) F ( x ) = ( h \circ g ) ( x )

Correct Answer

verifed

verified

Approximate the logarithm to four decimal places using the change of base formula. - log215\log _ { 2 } \frac { 1 } { 5 }


A) 0.4307- 0.4307
B) 1.0000- 1.0000
C) 0.3979- 0.3979
D) 2.3219- 2.3219

Correct Answer

verifed

verified

Determine whether the function is a one-to-one function. - f={(17,11) ,(16,11) ,(18,17) }\mathrm { f } = \{ ( 17 , - 11 ) , ( - 16 , - 11 ) , ( 18,17 ) \}


A) one-to-one
B) not one-to-one

Correct Answer

verifed

verified

Solve the logarithmic equation for x. Give an exact solution - log8(3x2) =2\log _ { 8 } ( 3 x - 2 ) = 2


A) 19
B) 6
C) 623\frac { 62 } { 3 }
D) 22

Correct Answer

verifed

verified

Showing 121 - 140 of 302

Related Exams

Show Answer