Filters
Question type

Solve. -How long will it take for $3700\$ 3700 to grow to $34,300\$ 34,300 at an interest rate of 10.3%10.3 \% if the interest is compounded continuously? Round the number of years to the nearest hundredth.


A) 0.22yr0.22 \mathrm { yr }
B) 2.16yr2.16 \mathrm { yr }
C) 2161.95yr2161.95 \mathrm { yr }
D) 21.62yr21.62 \mathrm { yr }

Correct Answer

verifed

verified

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =log4(x+5) f(x) =\log _{4}(x+5)  Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units


A) Shift y=log4xy = \log _ { 4 } x left 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units
B) Shift y=log4xy = \log _ { 4 } x left 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units
C) Shift y=log4xy = \log _ { 4 } x right 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units
D) Shift y=log4xy = \log _ { 4 } x right 5 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function. - f(x) =\log _{4}(x+5)      A)  Shift  y = \log _ { 4 } x  left 5 units   B)  Shift  y = \log _ { 4 } x  left 5 units   C)  Shift  y = \log _ { 4 } x  right 5 units   D)  Shift  y = \log _ { 4 } x  right 5 units

Correct Answer

verifed

verified

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x3) f(x) =2(x-3)  Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)


A) Shift y=2xy = 2 ^ { x } left 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)
B) Shift y=2xy = 2 ^ { x } right 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)
C) Shift y=2xy = 2 ^ { x } down 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)
D) Shift y=2xy = 2 ^ { x } up 3 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =2(x-3)      A)  Shift  y = 2 ^ { x }  left 3 unit(s)    B)  Shift  y = 2 ^ { x }  right 3 unit(s)    C)  Shift  y = 2 ^ { x }  down 3 unit(s)    D)  Shift  y = 2 ^ { x }  up 3 unit(s)

Correct Answer

verifed

verified

Solve the problem. -An initial investment of $14,000 is appreciated for 4 years in an account that earns 13% interest, compounded semiannually. Find the amount of money in the account at the end of the period.


A) $22,826.63
B) $23,169.94
C) $9169.94
D) $21,755.81

Correct Answer

verifed

verified

For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. } - f(x)=74x,f1(x)=47xf ( x ) = \frac { 7 } { 4 } x , f ^ { - 1 } ( x ) = \frac { 4 } { 7 } x

Correct Answer

verifed

verified

Express as a difference of logarithms. - log4911\log _ { 4 } \frac { 9 } { 11 }


A) log49÷log411\log _ { 4 } 9 \div \log _ { 4 } 11
B) log49log411\log _ { 4 } 9 - \log _ { 4 } 11
C) log411log49\log _ { 4 } 11 - \log _ { 4 } 9
D) log29log211\log _ { 2 } 9 - \log _ { 2 } 11

Correct Answer

verifed

verified

Choose the function that might be used as a model for the data in the scatter plot. - Choose the function that might be used as a model for the data in the scatter plot. -  A)  Polynomial, not quadratic B)  Exponential,  \mathrm { f } ( \mathrm { x } )  = a \mathrm {~b} ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } )  = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  C)  Logistic,  f ( x )  = \frac { a } { 1 + b e ^ { - k x } }  D)  Logarithmic,  f ( x )  = a + b \ln x


A) Polynomial, not quadratic
B) Exponential, f(x) =a bx\mathrm { f } ( \mathrm { x } ) = a \mathrm {~b} ^ { \mathrm { x } } or f(x) =P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
C) Logistic, f(x) =a1+bekxf ( x ) = \frac { a } { 1 + b e ^ { - k x } }
D) Logarithmic, f(x) =a+blnxf ( x ) = a + b \ln x

Correct Answer

verifed

verified

Provide an appropriate response. -Explain why negative numbers do not have logarithms.

Correct Answer

verifed

verified

Consider blured image, or blured image, where blured image is a po...

View Answer

Convert to an exponential equation. - log864=t\log _ { 8 } 64 = \mathrm { t }


A) 64t=864 ^ { t } = 8
B) 8t=648 ^ { t } = 64
C) 864=t864 = t
D) t8=64t ^ { 8 } = 64

Correct Answer

verifed

verified

Find the domain and range of the inverse of the given function. - f(x) =x4.93f ( x ) = \sqrt [ 3 ] { x - 4.9 }


A) Domain: [4.9,) [ 4.9 , \infty ) ; range: [0,) [ 0 , \infty )
B) Domain: all real numbers; range: [4.9,) [ 4.9 , \infty )
C) Domain and range: all real numbers
D) Domain: all real numbers; range: [0,) [ 0 , \infty )

Correct Answer

verifed

verified

Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x1) 1f(x) =3(x-1) -1


A) Shift y=3xy = 3 ^ { x } left 1 unit(s) and up 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)
B) Shift y=3xy = 3 ^ { x } left 1 unit(s) and down 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)
C) Shift y=3xy = 3 ^ { x } right 1 unit(s) and up 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)
D) Shift y=3xy = 3 ^ { x } right 1 unit(s) and dawn 1 unit(s)
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic exponential function. - f(x) =3(x-1) -1  A)  Shift  y = 3 ^ { x }  left 1 unit(s)   and up 1 unit(s)     B)  Shift  y = 3 ^ { x }  left 1 unit(s)   and down 1 unit(s)     C)  Shift  y = 3 ^ { x }  right 1 unit(s)  and up 1 unit(s)    D)  Shift  y = 3 ^ { x }  right 1 unit(s)  and dawn 1 unit(s)

Correct Answer

verifed

verified

Convert to a logarithmic equation. - 53=1255 ^ { 3 } = 125


A) 3=log12553 = \log _ { 125 } 5
B) 125=log53125 = \log _ { 5 } 3
C) 5=log31255 = \log _ { 3 } 125
D) 3=log51253 = \log _ { 5 } 125

Correct Answer

verifed

verified

The graph of a one-to-one function f is given. Sketch the graph of the inverse function f1\mathrm { f } ^ { - 1 } , on the same set of axes. Use a dashed line for the inverse. - The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)


A)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)
B)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)
C)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)
D)
 The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse. -   A)    B)    C)    D)

Correct Answer

verifed

verified

Using the horizontal-line test, determine whether the function is one-to-one. - f(x) =7x22f(x) =\frac{7}{x^{2}-2}  Using the horizontal-line test, determine whether the function is one-to-one. - f(x) =\frac{7}{x^{2}-2}     A)  Yes B)   \mathrm { No }


A) Yes
B) No\mathrm { No }

Correct Answer

verifed

verified

Provide an appropriate response. -Suppose that $1000 is invested for 5 years at 4% interest, compounded annually. In what year will the most interest be earned? Why?

Correct Answer

verifed

verified

The most interest will be earn...

View Answer

Find the domain and the vertical asymptote of the function. - g(x) =ln(x8) g ( x ) = \ln ( x - 8 )


A) Domain: (8,) ( 8 , \infty ) ; vertical asymptote: x=8x = 8
B) Domain: (,) ( - \infty , \infty ) ; vertical asymptote: none
C) Domain: (8,) ( - 8 , \infty ) ; vertical asymptote: x=8x = - 8
D) Domain: (0,) ( 0 , \infty ) ; vertical asymptote: x=0x = 0

Correct Answer

verifed

verified

Solve the problem. -An initial investment of $1000 is appreciated for 4 years in an account that earns 4% interest, compounded annually. Find the amount of money in the account at the end of the period.


A) $1216.65
B) $169.86
C) $1169.86
D) $1124.86

Correct Answer

verifed

verified

Graph the piecewise function. - f(x) ={ex8, for x<2x2, for 2x<1x3, for x1f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\x - 2 , & \text { for } - 2 \leq x < 1 \\x ^ { 3 } , & \text { for } x \geq 1\end{array} \right.  Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)


A)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)
B)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)
C)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)
D)
 Graph the piecewise function. - f ( x )  = \left\{ \begin{array} { l l }  e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.    A)    B)    C)    D)

Correct Answer

verifed

verified

Evaluate to four decimal places using a calculator. - e1.233\mathrm { e } ^ { 1.233 }


A) 7.38917.3891
B) 3.43153.4315
C) 3.35163.3516
D) 1.52031.5203

Correct Answer

verifed

verified

Provide an appropriate response. -Prove that the function f is one-to-one. f(x)=x3+5f ( x ) = \sqrt [ 3 ] { x } + 5

Correct Answer

verifed

verified

Assume that blured image for any numbers blured image and blured image in th...

View Answer

Showing 81 - 100 of 106

Related Exams

Show Answer