Filters
Question type

Study Flashcards

Evaluate the improper integral. - 025dxx16\int _ { 0 } ^ { 25 } \frac { d x } { \sqrt { | x - 16 | } }


A) 6
B) 7
C) 14
D) -2

Correct Answer

verifed

verified

Find the value of the constant k so that the given function in a probability density function for a random variable over the specified interval. - f(x) =kxf ( x ) = k ^ { x } over [0,20][ 0,20 ]


A) 1e201\frac { 1 } { \mathrm { e } ^ { 20 } - 1 }
B) 1e20+1\frac { 1 } { \mathrm { e } ^ { 20 } + 1 }
C) e201\mathrm { e } ^ { 20 } - 1
D) 2e20\frac { 2 } { \mathrm { e } ^ { 20 } }

Correct Answer

verifed

verified

Solve the initial value problem for y as a function of x. - x24dydx=x,x>2,y(4) =0\sqrt { x ^ { 2 } - 4 } \frac { d y } { d x } = x , x > 2 , y ( 4 ) = 0


A) y=x2423y = \sqrt { x ^ { 2 } - 4 } - 2 \sqrt { 3 }
B) y=x24y = \sqrt { x ^ { 2 } - 4 }
C) y=x24xy = \frac { \sqrt { x ^ { 2 } - 4 } } { x }
D) y=x24x32y = \frac { \sqrt { x ^ { 2 } - 4 } } { x } - \frac { \sqrt { 3 } } { 2 }

Correct Answer

verifed

verified

Solve the problem by integration. -The force F\mathrm { F } (in N) applied by a stamping machine in making a certain computer part is F=3xx2+11x+12\mathrm { F } = \frac { 3 \mathrm { x } } { \mathrm { x } ^ { 2 } + 11 \mathrm { x } + 12 } , where x\mathrm { x } is the distance (in cm\mathrm { cm } ) through which the force acts. Find the work done by the force from x=0\mathrm { x } = 0 to x=0.6 cm\mathrm { x } = 0.6 \mathrm {~cm} .


A) 0.0832 N· cm
B) 8.0928 N· cm
C) 0.0166 N· cm
D) 0.0055 N· cm

Correct Answer

verifed

verified

Integrate the function. - dx25x2121,x>115\int \frac { d x } { \sqrt { 25 x ^ { 2 } - 121 } } , x > \frac { 11 } { 5 }


A) 111ln115x+25x21215+C\frac { 1 } { 11 } \ln \left| \frac { 11 } { 5 } x + \frac { \sqrt { 25 x ^ { 2 } - 121 } } { 5 } \right| + C
B) 15lnsec1(115x) +25x212111+C\frac { 1 } { 5 } \ln \left| \sec ^ { - 1 } \left( \frac { 11 } { 5 } x \right) + \frac { \sqrt { 25 x ^ { 2 } - 121 } } { 11 } \right| + C
C) 15ln511x+25x212111+C\frac { 1 } { 5 } \ln \left| \frac { 5 } { 11 } x + \frac { \sqrt { 25 x ^ { 2 } - 121 } } { 11 } \right| + C
D) 15ln52x+1125x2121+C\frac { 1 } { 5 } \ln \left| \frac { 5 } { 2 } x + \frac { 11 } { \sqrt { 25 x ^ { 2 } - 121 } } \right| + C

Correct Answer

verifed

verified

Determine whether the improper integral converges or diverges. - dx5x6+1\int _ { - \infty } ^ { \infty } \frac { d x } { \sqrt { 5 x ^ { 6 } + 1 } }


A) Diverges
B) Converges

Correct Answer

verifed

verified

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula. - dx(25x2) 2\int \frac { d x } { \left( 25 - x ^ { 2 } \right) ^ { 2 } }


A) 110lnx+5x5+C\frac { 1 } { 10 } \ln \left| \frac { x + 5 } { x - 5 } \right| + C
B) x50(25x2) +C\frac { x } { 50 \left( 25 - x ^ { 2 } \right) } + C
C) 150(x25x2+110lnx+5x5) +C\frac { 1 } { 50 } \left( \frac { x } { 25 - x ^ { 2 } } + \frac { 1 } { 10 } \ln \left| \frac { x + 5 } { x - 5 } \right| \right) + C
D) 150(x25x2110lnx+5x5) +C\frac { 1 } { 50 } \left( \frac { x } { 25 - x ^ { 2 } } - \frac { 1 } { 10 } \ln \left| \frac { x + 5 } { x - 5 } \right| \right) + C

Correct Answer

verifed

verified

Use Simpson's Rule with n = 4 steps to estimate the integral. - 10sinπtdt\int _ { - 1 } ^ { 0 } \sin \pi \mathrm { tdt }


A) 1+24- \frac { 1 + \sqrt { 2 } } { 4 }
B) 122- 1 - 2 \sqrt { 2 }
C) 1+226- \frac { 1 + 2 \sqrt { 2 } } { 6 }
D) 2+26- \frac { 2 + \sqrt { 2 } } { 6 }

Correct Answer

verifed

verified

Determine whether the improper integral converges or diverges. - 1dxx2/5+2\int _ { 1 } ^ { \infty } \frac { d x } { x ^ { 2 / 5 } + 2 }


A) Converges
B) Diverges

Correct Answer

verifed

verified

Use reduction formulas to evaluate the integral. - sin23xcos23xdx\int \sin ^ { 2 } 3 x \cos ^ { 2 } 3 x d x


A) 13sin3xcos33x+x8+13sin6x+C- \frac { 1 } { 3 } \sin 3 x \cos ^ { 3 } 3 x + \frac { x } { 8 } + \frac { 1 } { 3 } \sin 6 x + C
B) 112sin3xcos23x+x8+148sin6x+C- \frac { 1 } { 12 } \sin 3 x \cos ^ { 2 } 3 x + \frac { x } { 8 } + \frac { 1 } { 48 } \sin 6 x + C
C) 112sin3xcos33x+x8+148sin6x+C- \frac { 1 } { 12 } \sin 3 x \cos ^ { 3 } 3 x + \frac { x } { 8 } + \frac { 1 } { 48 } \sin 6 x + C
D) 112sin3xcos33x+x8+148cos6x+C- \frac { 1 } { 12 } \sin 3 x \cos ^ { 3 } 3 x + \frac { x } { 8 } + \frac { 1 } { 48 } \cos 6 x + C

Correct Answer

verifed

verified

Solve the problem. -Find an upper bound for ET\left| \mathrm { E } _ { \mathrm { T } } \right| in estimating 15(3x2+8) dx\int _ { 1 } ^ { 5 } \left( 3 \mathrm { x } ^ { 2 } + 8 \right) \mathrm { dx } with n=6\mathrm { n } = 6 steps.


A) 12572\frac { 125 } { 72 }
B) 89\frac { 8 } { 9 }
C) 49\frac { 4 } { 9 }
D) 427\frac { 4 } { 27 }

Correct Answer

verifed

verified

Expand the quotient by partial fractions. - x+4x2+2x+1\frac { x + 4 } { x ^ { 2 } + 2 x + 1 }


A) 3x+1+1(x+1) 2\frac { 3 } { x + 1 } + \frac { 1 } { ( x + 1 ) ^ { 2 } }
B) 1x+1+4x+4\frac { 1 } { x + 1 } + \frac { 4 } { x + 4 }
C) 1x+1+3(x+1) 2\frac { 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } }
D) 1x+1+3(x+1) 2\frac { 1 } { x + 1 } + \frac { - 3 } { ( x + 1 ) ^ { 2 } }

Correct Answer

verifed

verified

Solve the problem. -Suppose a brewery has a filling machine that fills 12 ounce bottles of beer. It is known that the amount of beer poured by this filling machine follows a normal distribution with a mean of 12.14 onces and a standard Deviation of 0.04 ounce. Find the probability that the bottle contains more than 12.14 ounces of beer.


A) 0.4
B) 1
C) 0
D) 0.5

Correct Answer

verifed

verified

Solve the initial value problem for y as a function of x. - xdydx=x29,x3,y(3) =0x \frac { d y } { d x } = \sqrt { x ^ { 2 } - 9 } , x \geq 3 , y ( 3 ) = 0


A) y=3lnx3y = 3 \ln \frac { x } { 3 }
B) y=x293x+3y = \frac { \sqrt { x ^ { 2 } - 9 } } { 3 } - x + 3
C) y=x293sec1(x/3) y = \frac { \sqrt { x ^ { 2 } - 9 } } { 3 \sec ^ { - 1 } ( x / 3 ) }
D) y=3[x293sec1(x3) ]y = 3 \left[ \frac { \sqrt { \mathrm { x } ^ { 2 } - 9 } } { 3 } - \sec ^ { - 1 } \left( \frac { \mathrm { x } } { 3 } \right) \right]

Correct Answer

verifed

verified

Use reduction formulas to evaluate the integral. - 8cos32xdx\int 8 \cos ^ { 3 } 2 x d x


A) 4sin2x43cos32x+C4 \sin 2 x - \frac { 4 } { 3 } \cos ^ { 3 } 2 x + C
B) 4sin2x+43sin32x+C4 \sin 2 x + \frac { 4 } { 3 } \sin ^ { 3 } 2 x + C
C) 8sin2x83sin32x+C8 \sin 2 x - \frac { 8 } { 3 } \sin ^ { 3 } 2 x + C
D) 4sin2x43sin32x+C4 \sin 2 x - \frac { 4 } { 3 } \sin ^ { 3 } 2 x + C

Correct Answer

verifed

verified

Evaluate the integral. - 1xlnx6dx\int \frac { 1 } { x \ln x ^ { 6 } } d x


A) ln(lnx6) +C\ln \left( \ln x ^ { 6 } \right) + C
B) lnx6+C\ln x ^ { 6 } + C
C) 16lnx6+C\frac { 1 } { 6 } \ln x ^ { 6 } + C
D) 16ln(lnx6) +C\frac { 1 } { 6 } \ln \left( \ln x ^ { 6 } \right) + C

Correct Answer

verifed

verified

Evaluate the integral. -Use the formula f1(x) dx=xf1(x) x(ddxf1(x) ) dx\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int x \left( \frac { d } { d x } f ^ { - 1 } ( x ) \right) d x to evaluate the integral. cot1xdx\int \cot ^ { - 1 } x d x


A) xcot1x+lnx+Cx \cot ^ { - 1 } x + \ln x + C
B) xcot1x+x+Cx \cot ^ { - 1 } x + x + C
C) xcot1x+lnx2+1+Cx \cot ^ { - 1 } x + \ln \sqrt { x ^ { 2 } + 1 } + C
D) xcot1xlnx2+1+Cx \cot ^ { - 1 } x - \ln \sqrt { x ^ { 2 } + 1 } + C

Correct Answer

verifed

verified

Provide an appropriate response. -(a) Find the values of pp for which 011xpdx\int _ { 0 } ^ { 1 } \frac { 1 } { x p } d x converges. (b) Find the values of pp for which 011xpdx\int _ { 0 } ^ { 1 } \frac { 1 } { x _ { p } } d x diverges.

Correct Answer

verifed

verified

(a) The integral con...

View Answer

Provide an appropriate response. -  The "Simpson" sum is based upon the area under a ?\text { The "Simpson" sum is based upon the area under a } \underline { ? } \text {. }


A) rectangle
B) trapezoid
C) triangle
D) parabola

Correct Answer

verifed

verified

Use various trigonometric identities to simplify the expression then integrate. - cos7θsin2θdθ\int \cos ^ { 7 } \theta \sin 2 \theta d \theta


A) 14cos7θ+C\frac { 1 } { 4 } \cos ^ { 7 } \theta + C
B) 15cos10θ+C- \frac { 1 } { 5 } \cos ^ { 10 } \theta + C
C) 19cos8θ+C\frac { 1 } { 9 } \cos ^ { 8 } \theta + C
D) 29cos9θ+C- \frac { 2 } { 9 } \cos ^ { 9 } \theta + C

Correct Answer

verifed

verified

Showing 441 - 460 of 460

Related Exams

Show Answer