Filters
Question type

Find the center of mass of a homogeneous solid bounded by the paraboloid z=25x2y2z = 25 - x ^ { 2 } - y ^ { 2 } and z=0z = 0 .

Correct Answer

verifed

verified

Use spherical coordinates to evaluate Bx2+y2+z2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V , where BB is the ball x2+y2+z210x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 10 .


A) 10000π10000 \pi
B) 10π10 \pi
C) 1000π1000 \pi
D) 2000π2000 \pi

Correct Answer

verifed

verified

Use cylindrical coordinates to evaluate zx2+y2dV\iiint _ { z } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where EE is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=6z = - 6 and z=5z = 5 . Round the answer to two decimal places.

Correct Answer

verifed

verified

Calculate the iterated integral. 0x0101y28ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 8 y \sin x d z d y d x

Correct Answer

verifed

verified

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

Correct Answer

verifed

verified

 Find the area of the surface. The part of the surface z=xy that lies within the cylinder x2+y2=25\text { Find the area of the surface. The part of the surface } z = x y \text { that lies within the cylinder } x ^ { 2 } + y ^ { 2 } = 25 \text {. }

Correct Answer

verifed

verified

Use polar coordinates to evaluate 3309x2sin(x2+y2)dxdy\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \sin \left( x ^ { 2 } + y ^ { 2 } \right) d x d y

Correct Answer

verifed

verified

Evaluate the double integral by first identifying it as the volume of a solid. R(152x) dA,R={(x,y) 2x5,3y8}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 2 \leq x \leq 5,3 \leq y \leq 8 \}


A) 300
B) 100- 100
C) 0
D) 200
E) 100

Correct Answer

verifed

verified

Find the area of the surface SS where SS is the part of the surface x=yzx = y z that lies inside the cylinder y2+z2=25y ^ { 2 } + z ^ { 2 } = 25 .

Correct Answer

verifed

verified

Evaluate Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V where f(x,y,z)=7yf ( x , y , z ) = 7 y and TT is the region bounded by the paraboloid y=x2+z2y = x ^ { 2 } + z ^ { 2 } and the plane y=1y = 1 .

Correct Answer

verifed

verified

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

Correct Answer

verifed

verified

Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 } and the plane z=1z = 1 .


A) 6π6 \pi
B) 13π13 \pi
C) 3π3 \pi
D) 4.5π4.5 \pi
E) 2π2 \pi

Correct Answer

verifed

verified

 Use cylindrical coordinates to evaluate 2204x2016x2y2zdzdydx\text { Use cylindrical coordinates to evaluate } \int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } z d z d y d x \text {. }

Correct Answer

verifed

verified

 Find the area of the surface. The part of the sphere x2+y2+z2=49 that lies above the plane z=1\text { Find the area of the surface. The part of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 \text { that lies above the plane } z = 1 \text {. }

Correct Answer

verifed

verified

Find the mass and the center of mass of the lamina occupying the region RR , where RR is the triangular region with vertices (0,0),(2,5)( 0,0 ) , ( 2,5 ) , and (4,0)( 4,0 ) , and having the mass density ρ(x,y)=x\rho ( x , y ) = x .

Correct Answer

verifed

verified

Estimate the volume of the solid that lies above the square R=[0,4]×[0,4]R = [ 0,4 ] \times [ 0,4 ] and below the elliptic paraboloid f(x,y)=68x2y2f ( x , y ) = 68 - x ^ { 2 } - y ^ { 2 } . Divide RR into four equal squares and use the Midpoint rule.

Correct Answer

verifed

verified

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y24x ^ { 2 } + y ^ { 2 } \leq 4 .

Correct Answer

verifed

verified

Find the volume of the solid bounded in the first octanat bounded by the cylinder z=9y2z = 9 - y ^ { 2 } and the planes x=1x = 1 .

Correct Answer

verifed

verified

Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 55025y2(x2+y2) 3/2dxdy.\int _ { - 5 } ^ { 5 } \int _ { 0 } ^ { \sqrt { 25 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .


A) 1963.51963.5
B) 15.7115.71
C) 4908.744908.74
D) 39.2739.27
E) 625

Correct Answer

verifed

verified

Showing 141 - 159 of 159

Related Exams

Show Answer