Filters
Question type

The area of the surface generated by revolving the curve x(t) =t,y=3t2x ( t ) = t , \quad y = 3 t ^ { 2 } with t[0,2]t \in [ 0,2 ] about the y-axis is


A) π(1451451) 60\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 60 }
B) π(1451451) 54\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 54 }
C) π(1451451) 48\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 48 }
D) π(1451451) 42\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 42 }
E) π(1451451) 36\frac { \pi ( 145 \sqrt { 145 } - 1 ) } { 36 }

Correct Answer

verifed

verified

The rectangular equation of the plane curve, with parametric equations x(t) =csct,y(t) =cott,x ( t ) = \csc t , y ( t ) = \cot t, is


A) y=11x2y = \frac { 1 } { 1 - x ^ { 2 } }
B) y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }
C) x2y2=1x ^ { 2 } - y ^ { 2 } = 1
D) x2+y2=1x ^ { 2 } + y ^ { 2 } = 1
E) y=1x2+1y = - \frac { 1 } { x ^ { 2 } + 1 }

Correct Answer

verifed

verified

For a > 0, the polar curve r=acos2θr = - a \cos 2 \theta is a


A) Circle
B) Two-petal rose
C) Four-petal rose
D) Limaçon
E) Lemniscate

Correct Answer

verifed

verified

Let x(t) =2t3,y(t) =3t2x ( t ) = 2 t ^ { 3 } , y ( t ) = 3 t ^ { 2 } be the parametric equations of a curve. Then dydx\frac { d y } { d x } is


A) 1t- \frac { 1 } { t }
B) 2t\frac { 2 } { t }
C) t22\frac { t ^ { 2 } } { 2 }
D) 1t\frac { 1 } { t }
E) t2- \frac { t } { 2 }

Correct Answer

verifed

verified

The area of the surface generated by revolving the curve x(t) =cost,y(t) =2+sintx ( t ) = \cos t , \quad y ( t ) = 2 + \sin t with t[0,2π]t \in [ 0,2 \pi ] about the x-axis is


A) 4π24 \pi ^ { 2 }
B) 8π28 \pi ^ { 2 }
C) 12π212 \pi ^ { 2 }
D) 16π216 \pi ^ { 2 }
E) 2π22 \pi ^ { 2 }

Correct Answer

verifed

verified

For a \neq 0, the polar curve r=a(32cosθ) r = a ( 3 - 2 \cos \theta ) is a


A) Circle
B) Cardioid
C) Limaçon with inner loop
D) Dimpled limaçon
E) Convex limaçon

Correct Answer

verifed

verified

For a \neq 0, the polar curve r=a(13sinθ) r = a ( 1 - 3 \sin \theta ) is a


A) Circle
B) Cardioid
C) Limaçon with inner loop
D) Dimpled limaçon
E) Convex limaçon

Correct Answer

verifed

verified

The conic section r=11+sinθr = \frac { 1 } { 1 + \sin \theta } is


A) A straight line
B) A circle
C) A parabola
D) An ellipse
E) A hyperbola

Correct Answer

verifed

verified

The rectangular equation of the plane curve, with parametric equations x(t) =2t+5,y(t) =4t7,x ( t ) = 2 t + 5 , y ( t ) = 4 t - 7, is


A) y=4x3y = 4 x - 3
B) y=2x7y = 2 x - 7
C) y=2x17y = 2 x - 17
D) y=4x+3y = 4 x + 3
E) y=2x2y = 2 x - 2

Correct Answer

verifed

verified

For a \neq 0, the polar curve r=asin3θr = a \sin 3 \theta is a


A) Straight line
B) Circle
C) Three-petal rose
D) Cardioid
E) Limaçon

Correct Answer

verifed

verified

The rectangular equation that corresponds to the polar equation r2=cosθr ^ { 2 } = \cos \theta is


A) (x2+y2) 32=x\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
B) (x2+y2) 32=y\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = y
C) (x2y2) 32=x\left( x ^ { 2 } - y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x
D) (x2y2) 32=y\left( x ^ { 2 } - y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = y
E) (x2+y2) 32=x\left( - x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } = x

Correct Answer

verifed

verified

If A is the area of the intersection of the regions inside r=2cosθr = - 2 \cos \theta and outside r=1,r = 1, then A is


A) 6π166 \pi - 16
B) 33π3 \sqrt { 3 } - \pi
C) 4π336\frac { 4 \pi - 3 \sqrt { 3 } } { 6 }
D) π+13\pi + 1 - \sqrt { 3 }
E) 8π4\frac { 8 - \pi } { 4 }

Correct Answer

verifed

verified

The polar equation that corresponds to the rectangular equation 2x+y=42 x + y = 4 is


A) r=42cosθ+sinθr = \frac { 4 } { 2 \cos \theta + \sin \theta }
B) r=42cosθsinθr = \frac { 4 } { 2 \cos \theta - \sin \theta }
C) r=4cosθ+2sinθr = \frac { 4 } { \cos \theta + 2 \sin \theta }
D) r=4cosθ2sinθr = \frac { 4 } { \cos \theta - 2 \sin \theta }
E) r=42cosθ+sinθr = \frac { - 4 } { 2 \cos \theta + \sin \theta }

Correct Answer

verifed

verified

The rectangular equation of the conic section r=11+sinθr = \frac { 1 } { 1 + \sin \theta } is


A) y2=12xy ^ { 2 } = 1 - 2 x
B) y2=2x+1y ^ { 2 } = 2 x + 1
C) x2=12yx ^ { 2 } = 1 - 2 y
D) x2=2y+1x ^ { 2 } = 2 y + 1
E) y2=1xy ^ { 2 } = 1 - x

Correct Answer

verifed

verified

The polar equation that corresponds to the rectangular equation xy = 1 is


A) r2=tanθsecθr ^ { 2 } = - \tan \theta \sec \theta
B) r2=tanθsecθr ^ { 2 } = \tan \theta \sec \theta
C) r2=cscθsecθr ^ { 2 } = \csc \theta \sec \theta
D) r2=cscθsecθr ^ { 2 } = - \csc \theta \sec \theta
E) r2=cosθr ^ { 2 } = \cos \theta

Correct Answer

verifed

verified

If A is the area of the region bounded by r=2+2cosθ,r = 2 + 2 \cos \theta, then A is


A) 8π8 \pi
B) 6π6 \pi
C) 4π4 \pi
D) 2π2 \pi
E) π\pi

Correct Answer

verifed

verified

The rectangular equation of the conic section r=21+2cosθr = \frac { 2 } { 1 + 2 \cos \theta } is


A) 2y2=12x2 y ^ { 2 } = 1 - 2 x
B) x23y28x=4x ^ { 2 } - 3 y ^ { 2 } - 8 x = 4
C) 3x2y28y=43 x ^ { 2 } - y ^ { 2 } - 8 y = 4
D) x2+3y2+8y=4x ^ { 2 } + 3 y ^ { 2 } + 8 y = 4
E) 3x2y28x=43 x ^ { 2 } - y ^ { 2 } - 8 x = - 4

Correct Answer

verifed

verified

The rectangular equation of the plane curve, with parametric equations x(t) =sin3t,y(t) =cos23tx ( t ) = \sin 3 t , y ( t ) = \cos ^ { 2 } 3 t with t[0,π6],t \in \left[ 0 , \frac { \pi } { 6 } \right], is


A) y=1x2y = 1 - x ^ { 2 }
B) y=x21y = x ^ { 2 } - 1
C) y=x2+1y = x ^ { 2 } + 1
D) y=1x2y = - \sqrt { 1 - x ^ { 2 } }
E) y=1x2y = \sqrt { 1 - x ^ { 2 } }

Correct Answer

verifed

verified

The rectangular equation of the plane curve, with parametric equations x(t) =3t,y(t) =t+3x ( t ) = 3 - t , y ( t ) = t + 3 with t(,) ,t \in ( - \infty , \infty ) , is


A) xy=6x - y = 6
B) x+y=6x + y = - 6
C) xy=6x - y = - 6
D) x+y=6x + y = 6
E) x+y=3x + y = - 3

Correct Answer

verifed

verified

The rectangular equation of the plane curve, with parametric equations x(t) =4sint,y(t) =3cost,x ( t ) = 4 \sin t , y ( t ) = 3 \cos t, is


A) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
B) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
C) x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1
D) x216+y29=1- \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
E) 16x2+9y2=116 x ^ { 2 } + 9 y ^ { 2 } = 1

Correct Answer

verifed

verified

Showing 101 - 120 of 132

Related Exams

Show Answer