Filters
Question type

Find the inverse function of f(x)=3(x+1)2f ( x ) = 3 ( x + 1 ) ^ { 2 } , x<1x < - 1 .

Correct Answer

verifed

verified

blured image blured image blured image blured image blured image , but...

View Answer

Let f(x)=xx2f ( x ) = - \frac { | x | } { x ^ { 2 } } . (a) Sketch the graph of ff . (b) Find the domain and the range of ff .

Correct Answer

verifed

verified

(a) blured image
(b) D...

View Answer

Sketch the graph of the piecewise-defined function. f(x)={x2 if x1x2 if x>1f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & \text { if } | x | \leq 1 \\- x ^ { 2 } & \text { if } | x | > 1\end{array} \right.

Correct Answer

verifed

verified

Determine whether or not the function h(x)=x3xh ( x ) = x ^ { 3 } - x is one-to-one.

Correct Answer

verifed

verified

blured image
is not one-to-one, or sketch ...

View Answer

Let f(x)=3+x2f ( x ) = 3 + x ^ { 2 } , 0x50 \leq x \leq 5 (a) Sketch the graph of ff then use it to sketch the graph of f1f ^ { - 1 } . (b) Find f1f ^ { - 1 } .

Correct Answer

verifed

verified

blured image blured image blured image . So th...

View Answer

Determine whether the given curve is the graph of a function of xx . If it is, state the domain and range of the function.  Determine whether the given curve is the graph of a function of  x  . If it is, state the domain and range of the function.   A)  Function, domain:  ( - \infty , - 2 )  \cup ( - 2 , \infty )   , range:  [ 2 , \infty )   B)  Function, domain:  ( - \infty , - 2 )  \cup ( 2 , \infty )   , range:  [ - 2 , \infty )   C)  Function, domain:  ( - \infty , 0 )   , range:  [ 2 , \infty )   D)  Function, domain:  ( - \infty , - 2 )  \cup ( 0 , \infty )   , range:  [ - 2 , \infty )   E)  Not a function


A) Function, domain: (,2) (2,) ( - \infty , - 2 ) \cup ( - 2 , \infty ) , range:
[2,) [ 2 , \infty )
B) Function, domain: (,2) (2,) ( - \infty , - 2 ) \cup ( 2 , \infty ) , range:
[2,) [ - 2 , \infty )
C) Function, domain: (,0) ( - \infty , 0 ) , range:
[2,) [ 2 , \infty )
D) Function, domain: (,2) (0,) ( - \infty , - 2 ) \cup ( 0 , \infty ) , range:
[2,) [ - 2 , \infty )
E) Not a function

Correct Answer

verifed

verified

Find the inverse function of f(x)=21xf ( x ) = 2 - \frac { 1 } { x } , x0x \neq 0 .

Correct Answer

verifed

verified

If f(x)=22xf ( x ) = \sqrt { 2 - 2 x } and g(x)=x21g ( x ) = \sqrt { x ^ { 2 } - 1 } , find f+gf + g , fg\mathrm { fg } , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

A function is given. (a) Find all the local maximum and minimum values of the function and the value of x at which each occurs. (b) Find the intervals on which the function is increasing and on which the function is decreasing. State all answers correct to two decimal places. G(x)=2x2+x+1G ( x ) = \frac { 2 } { x ^ { 2 } + x + 1 }

Correct Answer

verifed

verified

(a) local maximum blured image w...

View Answer

If f(x)=2x2+xf ( x ) = 2 x ^ { 2 } + x and g(x)=3x1g ( x ) = 3 x - 1 , find f+gf + g , fgf - g , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

Given f(x)=1xf ( x ) = \frac { 1 } { x } , g(x)=xx+1g ( x ) = \frac { x } { x + 1 } , and h(x)=x+1xh ( x ) = \frac { x + 1 } { x } , find fghf \circ g \circ h .

Correct Answer

verifed

verified

A man is running around a circular track that is 200 m in circumference. An observer uses a stopwatch to record the runner's time at the end of each lap, obtaining the data in the following table. What was the man's average speed (rate) between 108 s and 203 s? Round the answer to two decimal places.  Time (s)  Distance (m)32200684001086001528002031000263120033514004121600\begin{array} { | c | c | } \hline \text { Time (s) } & \begin{array} { c } \text { Distance } \\( \mathrm { m } )\end{array} \\\hline 32 & 200 \\\hline 68 & 400 \\\hline 108 & 600 \\\hline 152 & 800 \\\hline 203 & 1000 \\\hline 263 & 1200 \\\hline 335 & 1400 \\\hline 412 & 1600 \\\hline\end{array}

Correct Answer

verifed

verified

Graphs of the functions f and g are given. (a) Which is larger, f(3) or g(3)?f ( - 3 ) \text { or } g ( 3 ) ? (b) Which is larger, f(1) or g(1)?f ( - 1 ) \text { or } g ( - 1 ) ? (c) For which values of x is f(x)=g(x)?f ( x ) = g ( x ) ?  Graphs of the functions f and g are given. (a) Which is larger,  f ( - 3 ) \text { or } g ( 3 ) ?  (b) Which is larger,  f ( - 1 ) \text { or } g ( - 1 ) ?  (c) For which values of x is  f ( x ) = g ( x ) ?

Correct Answer

verifed

verified

For the functions f(x)=1x2f ( x ) = \frac { 1 } { x - 2 } and g(x)=xx1g ( x ) = \frac { x } { x - 1 } , find f+gf + g , fgf - g , fg\mathrm { fg } , fg\frac { f } { g } and their domains. Answer f+g=1x2+xx1=x2x1(x2)(x1)f + g = \frac { 1 } { x - 2 } + \frac { x } { x - 1 } = \frac { x ^ { 2 } - x - 1 } { ( x - 2 ) ( x - 1 ) } \quad domain: (,1)(1,2)(2,)( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) fg=1x2xx1=x23x+1(x2)(x1) domain: (,1)(1,2)(2,)fg=(1x2)(xx1)=x(x1)(x2) domain: (,1)(1,2)(2,)fg=(x1)(x2)x domain: (,0)(0,1)(1,2)(2,)\begin{array} { l l } f - g = \frac { 1 } { x - 2 } - \frac { x } { x - 1 } = - \frac { x ^ { 2 } - 3 x + 1 } { ( x - 2 ) ( x - 1 ) } & \text { domain: } ( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) \\f g = \left( \frac { 1 } { x - 2 } \right) \left( \frac { x } { x - 1 } \right) = \frac { x } { ( x - 1 ) ( x - 2 ) } & \text { domain: } ( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) \\\frac { f } { g } = \frac { ( x - 1 ) } { ( x - 2 ) x } & \text { domain: } ( - \infty , 0 ) \cup ( 0,1 ) \cup ( 1,2 ) \cup ( 2 , \infty )\end{array} 10. Given f(x)=2x2f ( x ) = 2 x - 2 and g(x)=2x2g ( x ) = 2 x ^ { 2 } , find (gf)(1)( g \circ f ) ( - 1 ) .

Correct Answer

verifed

verified

For the function f(x)=2x21f ( x ) = 2 x ^ { 2 } - 1 , find f(x+1)f ( x + 1 ) and f(x)+1f ( x ) + 1 .

Correct Answer

verifed

verified

Let f(x)=2x1f ( x ) = 2 x - 1 . (a) Sketch the graph of ff . (b) Find the domain of ff . (c) State the intervals on which ff is increasing and on which ff is decreasing.

Correct Answer

verifed

verified

(a) blured image
(b) D...

View Answer

Let f(x)=3x+1f ( x ) = 3 x + 1 and g(x)=3x22x+1g ( x ) = 3 x ^ { 2 } - 2 x + 1 . Find fgf - g , fg\mathrm { fg } , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

If f(x)=2x2+1f ( x ) = 2 x ^ { 2 } + 1 and g(x)=x1g ( x ) = x - 1 , find f+gf + g , fg\mathrm { fg } , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

A function is given. Use a graphing calculator to draw the graph of f. Find the domain and range of f from the graph. f(x)=x2,3x5f ( x ) = x ^ { 2 } , \quad - 3 \leq x \leq 5

Correct Answer

verifed

verified

Determine whether or not the function g(x)=1x2,x0g ( x ) = 1 - x ^ { 2 } , x \geq 0 is one-to-one.

Correct Answer

verifed

verified

blured image
Two different positive numbers cannot h...

View Answer

Showing 41 - 60 of 98

Related Exams

Show Answer