Filters
Question type

Study Flashcards

Values for H and S for a reaction can be determined experimentally by fitting a linear equation to a plot of ________ on the x-axis and ________ on the y-axis. The slope of this equation is equal to ________ and the intercept allows us to calculate ________.

Correct Answer

verifed

verified

1/T; ln K; ...

View Answer

Determine Determine   <font face= symbol ></font>     given the following information:   A) (<font face= symbol ></font>2,705 kJ)  B) (<font face= symbol ></font>608.0 kJ)  C) (<font face= symbol ></font>1,791 kJ)  D) (<font face= symbol ></font>3,457 kJ)  E) (<font face= symbol ></font>608.0 kJ) Determine   <font face= symbol ></font>     given the following information:   A) (<font face= symbol ></font>2,705 kJ)  B) (<font face= symbol ></font>608.0 kJ)  C) (<font face= symbol ></font>1,791 kJ)  D) (<font face= symbol ></font>3,457 kJ)  E) (<font face= symbol ></font>608.0 kJ) Determine   <font face= symbol ></font>     given the following information:   A) (<font face= symbol ></font>2,705 kJ)  B) (<font face= symbol ></font>608.0 kJ)  C) (<font face= symbol ></font>1,791 kJ)  D) (<font face= symbol ></font>3,457 kJ)  E) (<font face= symbol ></font>608.0 kJ) given the following information: Determine   <font face= symbol ></font>     given the following information:   A) (<font face= symbol ></font>2,705 kJ)  B) (<font face= symbol ></font>608.0 kJ)  C) (<font face= symbol ></font>1,791 kJ)  D) (<font face= symbol ></font>3,457 kJ)  E) (<font face= symbol ></font>608.0 kJ)


A) (2,705 kJ)
B) (608.0 kJ)
C) (1,791 kJ)
D) (3,457 kJ)
E) (608.0 kJ)

Correct Answer

verifed

verified

Noxious NO gas can form from N2 and O2 gases in automobile engines at high temperatures. If the value of the equilibrium constant, Kc, for this reaction at 25C is 1.95 1031, what is the value at 2,000C? Noxious NO gas can form from N<sub>2</sub> and O<sub>2</sub> gases in automobile engines at high temperatures. If the value of the equilibrium constant, K<sub>c</sub>, for this reaction at 25<font face= symbol ></font>C is 1.95 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>31</sup>, what is the value at 2,000<font face= symbol ></font>C?       Thermodynamic Properties of Nitrogen Monoxide     S<font face= symbol ></font>87.6 kJ/mol 90.3 kJ/mol 211 J/(mol <font face= symbol ></font> K)  A) 2.8 <font face= symbol ></font> 10<sup>3</sup> B) 3.7 <font face= symbol ></font> 10<sup>2</sup> C) 6.9 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>2</sup> D) 6.2 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>4</sup> E) 1.7 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>6</sup> Noxious NO gas can form from N<sub>2</sub> and O<sub>2</sub> gases in automobile engines at high temperatures. If the value of the equilibrium constant, K<sub>c</sub>, for this reaction at 25<font face= symbol ></font>C is 1.95 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>31</sup>, what is the value at 2,000<font face= symbol ></font>C?       Thermodynamic Properties of Nitrogen Monoxide     S<font face= symbol ></font>87.6 kJ/mol 90.3 kJ/mol 211 J/(mol <font face= symbol ></font> K)  A) 2.8 <font face= symbol ></font> 10<sup>3</sup> B) 3.7 <font face= symbol ></font> 10<sup>2</sup> C) 6.9 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>2</sup> D) 6.2 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>4</sup> E) 1.7 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>6</sup> Noxious NO gas can form from N<sub>2</sub> and O<sub>2</sub> gases in automobile engines at high temperatures. If the value of the equilibrium constant, K<sub>c</sub>, for this reaction at 25<font face= symbol ></font>C is 1.95 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>31</sup>, what is the value at 2,000<font face= symbol ></font>C?       Thermodynamic Properties of Nitrogen Monoxide     S<font face= symbol ></font>87.6 kJ/mol 90.3 kJ/mol 211 J/(mol <font face= symbol ></font> K)  A) 2.8 <font face= symbol ></font> 10<sup>3</sup> B) 3.7 <font face= symbol ></font> 10<sup>2</sup> C) 6.9 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>2</sup> D) 6.2 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>4</sup> E) 1.7 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>6</sup> Thermodynamic Properties of Nitrogen Monoxide Noxious NO gas can form from N<sub>2</sub> and O<sub>2</sub> gases in automobile engines at high temperatures. If the value of the equilibrium constant, K<sub>c</sub>, for this reaction at 25<font face= symbol ></font>C is 1.95 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>31</sup>, what is the value at 2,000<font face= symbol ></font>C?       Thermodynamic Properties of Nitrogen Monoxide     S<font face= symbol ></font>87.6 kJ/mol 90.3 kJ/mol 211 J/(mol <font face= symbol ></font> K)  A) 2.8 <font face= symbol ></font> 10<sup>3</sup> B) 3.7 <font face= symbol ></font> 10<sup>2</sup> C) 6.9 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>2</sup> D) 6.2 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>4</sup> E) 1.7 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>6</sup> Noxious NO gas can form from N<sub>2</sub> and O<sub>2</sub> gases in automobile engines at high temperatures. If the value of the equilibrium constant, K<sub>c</sub>, for this reaction at 25<font face= symbol ></font>C is 1.95 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>31</sup>, what is the value at 2,000<font face= symbol ></font>C?       Thermodynamic Properties of Nitrogen Monoxide     S<font face= symbol ></font>87.6 kJ/mol 90.3 kJ/mol 211 J/(mol <font face= symbol ></font> K)  A) 2.8 <font face= symbol ></font> 10<sup>3</sup> B) 3.7 <font face= symbol ></font> 10<sup>2</sup> C) 6.9 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>2</sup> D) 6.2 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>4</sup> E) 1.7 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>6</sup> S87.6 kJ/mol 90.3 kJ/mol 211 J/(mol K)


A) 2.8 103
B) 3.7 102
C) 6.9 102
D) 6.2 104
E) 1.7 106

Correct Answer

verifed

verified

When you increase the volume of a gas, the energy separation between microstates ________


A) increases.
B) decreases.
C) remains unchanged.
D) becomes infinite.
E) disappears.

Correct Answer

verifed

verified

Of the three modes of molecular motion-vibration, rotation, and translation-which requires the greatest amount of energy to cause an excitation from the ground state to the first excited state?


A) vibration
B) rotation
C) translation
D) They all require the same amount of energy.
E) None, because quantized energy states do not apply to these motions.

Correct Answer

verifed

verified

Indicate which of the following has the highest entropy at 298 K.


A) 0.5 g of HCN
B) 1 mol of HCN
C) 2 kg of HCN
D) 2 mol of HCN
E) All of the above have the same entropy at 298 K.

Correct Answer

verifed

verified

Which of the following must be true for the microstates of a system? I.The energy of each microstate equals the energy of the system. II.The entropy of each microstate equals the entropy of the system. III.The number of microstates equals the entropy of the system.


A) I only
B) II only
C) III only
D) I and III only
E) I, II, and III are all true.

Correct Answer

verifed

verified

What is the standard entropy change when 10.0 g of methane reacts with 10.0 g of oxygen? What is the standard entropy change when 10.0 g of methane reacts with 10.0 g of oxygen?    What is the standard entropy change when 10.0 g of methane reacts with 10.0 g of oxygen?

Correct Answer

verifed

verified

F...

View Answer

Using the thermodynamic data below, determine the equilibrium constant for the conversion of oxygen to ozone at 2,000 K. Substance Using the thermodynamic data below, determine the equilibrium constant for the conversion of oxygen to ozone at 2,000 K. Substance   (kJ/mol)    (kJ/mol)  S<font face= symbol ></font> (J/mol · K)  O<sub>2</sub>(g)  0 0 205.0 O<sub>3</sub>(g)  142.3 163.4 237.6       A) 2.04 <font face= symbol ></font> 10<sup>7</sup> B) 5.44 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>14</sup> C) 2.67 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>8</sup> D) 2.91 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>9</sup> E) 3.65 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>12</sup> (kJ/mol) Using the thermodynamic data below, determine the equilibrium constant for the conversion of oxygen to ozone at 2,000 K. Substance   (kJ/mol)    (kJ/mol)  S<font face= symbol ></font> (J/mol · K)  O<sub>2</sub>(g)  0 0 205.0 O<sub>3</sub>(g)  142.3 163.4 237.6       A) 2.04 <font face= symbol ></font> 10<sup>7</sup> B) 5.44 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>14</sup> C) 2.67 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>8</sup> D) 2.91 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>9</sup> E) 3.65 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>12</sup> (kJ/mol) S (J/mol · K) O2(g) 0 0 205.0 O3(g) 142.3 163.4 237.6 Using the thermodynamic data below, determine the equilibrium constant for the conversion of oxygen to ozone at 2,000 K. Substance   (kJ/mol)    (kJ/mol)  S<font face= symbol ></font> (J/mol · K)  O<sub>2</sub>(g)  0 0 205.0 O<sub>3</sub>(g)  142.3 163.4 237.6       A) 2.04 <font face= symbol ></font> 10<sup>7</sup> B) 5.44 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>14</sup> C) 2.67 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>8</sup> D) 2.91 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>9</sup> E) 3.65 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>12</sup> Using the thermodynamic data below, determine the equilibrium constant for the conversion of oxygen to ozone at 2,000 K. Substance   (kJ/mol)    (kJ/mol)  S<font face= symbol ></font> (J/mol · K)  O<sub>2</sub>(g)  0 0 205.0 O<sub>3</sub>(g)  142.3 163.4 237.6       A) 2.04 <font face= symbol ></font> 10<sup>7</sup> B) 5.44 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>14</sup> C) 2.67 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>8</sup> D) 2.91 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>9</sup> E) 3.65 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>12</sup> Using the thermodynamic data below, determine the equilibrium constant for the conversion of oxygen to ozone at 2,000 K. Substance   (kJ/mol)    (kJ/mol)  S<font face= symbol ></font> (J/mol · K)  O<sub>2</sub>(g)  0 0 205.0 O<sub>3</sub>(g)  142.3 163.4 237.6       A) 2.04 <font face= symbol ></font> 10<sup>7</sup> B) 5.44 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>14</sup> C) 2.67 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>8</sup> D) 2.91 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>9</sup> E) 3.65 <font face= symbol ></font> 10<font face= symbol ><sup></sup></font><sup>12</sup>


A) 2.04 107
B) 5.44 1014
C) 2.67 108
D) 2.91 109
E) 3.65 1012

Correct Answer

verifed

verified

If a reaction If a reaction   has   <font face= symbol ></font> 0, then when the reaction is at equilibrium there will be ________ A) absolutely no B that is formed. B) smaller quantities of B and larger quantities of A. C) equal quantities of A and B. D) large quantities of B and smaller quantities of A. E) absolutely no A remaining. has If a reaction   has   <font face= symbol ></font> 0, then when the reaction is at equilibrium there will be ________ A) absolutely no B that is formed. B) smaller quantities of B and larger quantities of A. C) equal quantities of A and B. D) large quantities of B and smaller quantities of A. E) absolutely no A remaining. 0, then when the reaction is at equilibrium there will be ________


A) absolutely no B that is formed.
B) smaller quantities of B and larger quantities of A.
C) equal quantities of A and B.
D) large quantities of B and smaller quantities of A.
E) absolutely no A remaining.

Correct Answer

verifed

verified

Determine Determine <font face= symbol ></font><font face= symbol ></font>   for       given the following information:   A) (<font face= symbol ></font>41.10 J/K)  B) (<font face= symbol ></font>165.29 J/K)  C) (<font face= symbol ></font>398.75 J/K)  D) (<font face= symbol ></font>165.29 J/K)  E) (<font face= symbol ></font>41.10 J/K) for Determine <font face= symbol ></font><font face= symbol ></font>   for       given the following information:   A) (<font face= symbol ></font>41.10 J/K)  B) (<font face= symbol ></font>165.29 J/K)  C) (<font face= symbol ></font>398.75 J/K)  D) (<font face= symbol ></font>165.29 J/K)  E) (<font face= symbol ></font>41.10 J/K) Determine <font face= symbol ></font><font face= symbol ></font>   for       given the following information:   A) (<font face= symbol ></font>41.10 J/K)  B) (<font face= symbol ></font>165.29 J/K)  C) (<font face= symbol ></font>398.75 J/K)  D) (<font face= symbol ></font>165.29 J/K)  E) (<font face= symbol ></font>41.10 J/K) Determine <font face= symbol ></font><font face= symbol ></font>   for       given the following information:   A) (<font face= symbol ></font>41.10 J/K)  B) (<font face= symbol ></font>165.29 J/K)  C) (<font face= symbol ></font>398.75 J/K)  D) (<font face= symbol ></font>165.29 J/K)  E) (<font face= symbol ></font>41.10 J/K) given the following information: Determine <font face= symbol ></font><font face= symbol ></font>   for       given the following information:   A) (<font face= symbol ></font>41.10 J/K)  B) (<font face= symbol ></font>165.29 J/K)  C) (<font face= symbol ></font>398.75 J/K)  D) (<font face= symbol ></font>165.29 J/K)  E) (<font face= symbol ></font>41.10 J/K)


A) (41.10 J/K)
B) (165.29 J/K)
C) (398.75 J/K)
D) (165.29 J/K)
E) (41.10 J/K)

Correct Answer

verifed

verified

A chemist is planning to study a chemical equilibrium for which no measured explicit thermodynamic values are available. However, the reaction involves common chemical species. What information could a chemist use to make predictions about the equilibrium?


A) equilibrium constants for the equilibrium reactions that can be combined to make the new equilibrium
B) (A chemist is planning to study a chemical equilibrium for which no measured explicit thermodynamic values are available. However, the reaction involves common chemical species. What information could a chemist use to make predictions about the equilibrium? A) equilibrium constants for the equilibrium reactions that can be combined to make the new equilibrium B)  (  values for the reactants and products of the new reaction)  C) (<font face= symbol ></font>H<sub>f</sub> and S<font face= symbol ></font> values for the reactants and products of the new reaction)  D) all of the above values for the reactants and products of the new reaction)
C) (Hf and S values for the reactants and products of the new reaction)
D) all of the above

Correct Answer

verifed

verified

The standard entropy of N2(g) is 191.5 J/mol K. Calculate the entropy per nitrogen molecule and the number of microstates for each molecule. Discuss the number of microstates in terms of the molecular motions accessible to each molecule.

Correct Answer

verifed

verified

Smolecule 191.5 J/mol ...

View Answer

For the following exothermic reaction, predict under which conditions the reaction will be spontaneous. For the following exothermic reaction, predict under which conditions the reaction will be spontaneous.   A) The reaction is always spontaneous. B) The reaction is never spontaneous. C) The reaction is spontaneous at high temperatures. D) The reaction is spontaneous at low temperatures. E) Insufficient data is provided to answer this question.


A) The reaction is always spontaneous.
B) The reaction is never spontaneous.
C) The reaction is spontaneous at high temperatures.
D) The reaction is spontaneous at low temperatures.
E) Insufficient data is provided to answer this question.

Correct Answer

verifed

verified

Jane can accept that G RT ln K, but she cannot reconcile the relationship between S and ln K. Please explain it to her.


A) (S R ln K H /T)
B) (S ln (K/R) H /T)
C) (S R ln (K/T) H )
D) (S R ln (K) H /T)
E) (S R ln (K) H /T)

Correct Answer

verifed

verified

If for a given chemical reaction at 298 K, the change in free energy, G, is positive and the change in the standard free energy, G , is negative, then ________


A) Q K and product is turning back into reactant.
B) Q K and more product is being produced.
C) Q K and product is turning back into reactant.
D) Q K and more product is being produced.
E) Q K and the reaction has stopped.

Correct Answer

verifed

verified

Before class, students were distributed throughout a classroom. When the bell rang, all the students sat down at three tables in the center of the room. The entropy of the class ________


A) increased.
B) decreased.
C) remained the same.
D) cannot be determined.
E) is irrelevant.

Correct Answer

verifed

verified

The standard molar entropy of lead(II) bromide (PbBr2) is 161 J/(mol K) . What is the entropy of 2.45 g of PbBr2?


A) (1.07 J/K)
B) (1.07 J/K)
C) (161 J/K)
D) (161 J/K)
E) 0 J/K

Correct Answer

verifed

verified

When plotting ln K vs. 1/T, a linear relationship is obtained ________


A) with a slope of H /R and an intercept of S/R.
B) with a slope of H /R and an intercept of S/R.
C) with a slope of H /R and an intercept of S/R.
D) with a slope of H /R and an intercept of S/R.
E) never, because logarithmic relationships are intrinsically nonlinear.

Correct Answer

verifed

verified

The symbol The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)   (CH3OH, l) refers to which of the following reactions?


A) The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)
B) The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)   The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)   The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)
C) The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)   The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)   The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)
D) The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)
E) The symbol <font face= symbol ></font><font face= symbol ></font>   (CH<sub>3</sub>OH, l)  refers to which of the following reactions? A)    B)        C)        D)    E)

Correct Answer

verifed

verified

Showing 121 - 140 of 186